Sobolev regularity of the Bergman projection on certain pseudoconvex domains
نویسندگان
چکیده
منابع مشابه
A study of the Bergman projection in certain Hartogs domains
We show that the Bergman projection does not preserve smoothness of functions in some pseudoconvex domains in the space of two complex variables.
متن کاملSobolev Space Projections in Strictly Pseudoconvex Domains
The orthogonal projection from a Sobolev space WS(Q) onto the subspace of holomorphic functions is studied. This analogue of the Bergman projection is shown to satisfy regularity estimates in higher Sobolev norms when ß is a smooth bounded strictly pseudoconvex domain in C". The Bergman projection P0: L2(ü) -» L2(S2) n {holomorphic functions}, where S2 c C" is a smooth bounded domain, has prove...
متن کاملLocal Boundary Regularity of the Szegő Projection and Biholomorphic Mappings of Non-pseudoconvex Domains
It is shown that the Szegő projection S of a smoothly bounded domain Ω, not necessarily pseudoconvex, satisfies local regularity estimates at certain boundary points, provided that condition R holds for Ω. It is also shown that any biholomorphic mapping f : Ω → D between smoothly bounded domains extends smoothly near such points, provided that a weak regularity assumption holds for D. 1. Prelim...
متن کاملRegularity of the Bergman Projection on Forms and Plurisubharmonicity Conditions
A function f ∈ C(Ω) is holomorphic on Ω, if it satisfies the CauchyRiemann equations: ∂̄f = ∑n k=1 ∂f ∂z̄k dz̄k = 0 in Ω. Denote the set of holomorphic functions on Ω by H(Ω). The Bergman projection, B0, is the orthogonal projection of square-integrable functions onto H(Ω)∩L2(Ω). Since the Cauchy-Riemann operator, ∂̄ above, extends naturally to act on higher order forms, we can as well define Bergm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of A. Razmadze Mathematical Institute
سال: 2017
ISSN: 2346-8092
DOI: 10.1016/j.trmi.2016.10.004